Числовые характеристики случайных величин
(20)
На рис. 3 приведены примеры кривых распределения с различными значениями эксцесса. Для нормального распределения Е = 0. Кривые, более островершинные, чем нормальная, имеют положительный эксцесс, более плосковершинные - отрицательный.
Рис. 2. Кривые распределения с различной степенью крутости (эксцессом)
Моменты более высоких порядков в инженерных приложениях математической статистики обычно не применяются.
Мода
дискретной случайной величины - это ее наиболее вероятное значение. Модой непрерывной случайной величины называется ее значение, при котором плотность вероятности максимальна (рис. 2). Если кривая распределения имеет один максимум, то распределение называется унимодальным. Если кривая распределения имеет более одного максимума, то распределение называется полимодальным. Иногда встречаются распределения, кривые которых имеют не максимум, а минимум. Такие распределения называются антимодальными. В общем случае мода и математическое ожидание случайной величины не совпадают. В частном случае, для модального, т.е. имеющего моду, симметричного распределения и при условии, что существует математическое ожидание, последнее совпадает с модой и центром симметрии распределения.
Медиана
случайной величины Х - это ее значение Ме, для которого имеет место равенство: т.е. равновероятно, что случайная величина Х окажется меньше или больше Ме. Геометрически медиана - это абсцисса точки, в которой площадь под кривой распределения делится пополам. В случае симметричного модального распределения медиана, мода и математическое ожидание совпадают.