Вероятностно-статистические методы моделирования экономических систем
Под задачей идентификации закона распределения наблюдаемой случайной величины (структурно-параметрической идентификации), как правило, понимают задачу выбора такой параметрической модели закона распределения вероятностей, которая наилучшим образом соответствует результатам экспериментальных наблюдений. Случайные ошибки средств измерений не так уж часто подчиняются нормальному закону, точнее, не так часто хорошо описываются моделью нормального закона. В основе измерительных приборов и систем лежат различные физические принципы, различные методы измерений и различные преобразования измерительных сигналов. Погрешности измерений как величины являются следствием влияния множества факторов, случайного и неслучайного характера, действующих постоянно или эпизодически. Поэтому понятно, что только при выполнении определенных предпосылок (теоретических и технических) погрешности измерений достаточно хорошо описываются моделью нормального закона.
Вообще говоря, следует понимать, что истинный закон распределения (если он, конечно, существует), описывающий погрешности конкретной измерительной системы, остается (останется) неизвестным, не смотря на все наши попытки его идентифицировать. На основании данных измерений и теоретических соображений мы можем только подобрать вероятностную модель, которая в некотором смысле наилучшим образом приближает этот истинный закон. Если построенная модель адекватна, то есть применяемые критерии не дают оснований для ее отклонения, то на основе данной модели можно вычислить все интересующие нас вероятностные характеристики случайной составляющей погрешности измерительного средства, которые будут отличаться от истинных значений только за счет не исключенной систематической (ненаблюдаемой или нерегистрируемой) составляющей погрешности измерений. Ее малость и характеризует правильность измерений. Множество возможных законов распределения вероятностей, которые можно использовать для описания наблюдаемых случайных величин, не ограничено. Бессмысленно ставить целью задачи идентификации нахождение истинного закона распределения наблюдаемой величины. Мы можем лишь решать задачу выбора наилучшей модели из некоторого множества. Например, из того множества параметрических законов и семейств распределений, которые используются в приложениях, и упоминание о которых можно найти в литературных источниках.
Классический подход к структурно-параметрической идентификации закона распределения. Под классическим подходом будем понимать алгоритм выбора закона распределения, целиком базирующийся на аппарате математической статистики.
- Элементарные понятия о случайных событиях, величинах и функциях
- Числовые характеристики случайных величин
- Статистическая оценка законов распределения случайных величин