Статистическая оценка законов распределения случайных величин
Случайная величина имеет суммарную природу, при большом объеме выборки она распределена по закону близкому к нормальному. Тогда вероятность попадания случайной величины в интервал будет равна:
, где
Где - функция Лапласа.
Из формулы (3) и таблиц функции Лапласа находим число ε>0 и записываем доверительный интервал для точного значения случайной величины Х с надежностью α.
В этой курсовой работе значение σ заменим, и тогда формула (3) примет вид:
Найдем доверительный интервал , в котором находится математическое ожидание. При α = 0.99, n = 100, ,.
по таблицам Лапласа находим:
Отсюда ε = 0,5986.
- доверительный интервал, в котором с вероятностью 99% находится точное значение математического ожидания.
Заключение
случайный величина распределение экономический
Решение задач структурно-параметрической идентификации при ограниченных объемах выборок, которыми, как правило, обладают метрологи, обостряет проблему. В этом случае еще более важными оказываются корректность применения статистических методов анализа, использование оценок, обладающих наилучшими статистическими свойствами, и критериев, обладающих наибольшей мощностью.
При решении задач идентификации предпочтительнее опираться на классический подход. При идентификации рекомендуется рассматривать более широкое множество законов распределения, в том числе модели в виде смесей законов. В этом случае для любого эмпирического распределения мы всегда сможем построить адекватную, статистически существенно более обоснованную математическую модель.
Следует ориентироваться на использование и разработку программных систем, обеспечивающих решение задач структурно-параметрической идентификации законов распределений при любой форме регистрируемых наблюдений (измерений), включающих современные методы статистического анализа, ориентироваться на широкое, но корректное использование в исследованиях методов компьютерного моделирования. Мы уже видели, что для многих экспериментов нет никаких различий в подсчёте вероятностей событий, тогда как элементарные исходы в этих экспериментах очень различаются. Но нас и должны интересовать именно вероятности событий, а не структура пространства элементарных исходов. Поэтому пора во всех таких «похожих» экспериментах вместо самых разных элементарных исходов использовать, например, числа. Иначе говоря, каждому элементарному исходу поставить в соответствие некоторое вещественное число, и работать только с числами.